D 167 119

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY

REPORT NO
PUB DATE

NOTE
AVAILABLE FROM

EDRS PRICE
DESC RIPTORS

DOCUNENT RESUNE
18 006 0665

Waterman, D. A.

Rule-Directed Interactive Transaction Agents: An
Approach to Knowledge RPcquisition.
Rand Corp., Santa Mcnica, Calif.
advanced Research Projects Agency
D.C.

R=2171=ARPA

Feb 78

(DOD) , tashington,

" 58p.

Rand Corporation, Santa Mcnica, California 90406
($5.00}

MF-$0.83 Plus Postage. HC Not Availakle from EDRS.
*Computer Assisted Instruction; *Ccmputer Programs;
#Information Processing; #?Mar Machine Systems; Cn

Line Systems; *Programing; Programing languages

ABSTRACT
This report describes the develcgment of computer

- programs called user agents, which, through interacticn with users:,
can either learn new facts and store them ir a data base or learn ne«
procedures for data manipulation and represent them as prcgrams.
These programs are written in RITA, the Fule-directed Interactive
Transaction Agent system, and are organized as sets of YF-THEN rules
or "production systems." The programs ar€ akle tc act as “rersonal
computer agents" tc perform a variety c¢f tasks. Fotr types of RITA
aqents are (1) an exemplary programing agent that watches a user

perform an arbitrary series of operations on the ccmputer and then
writes a proqram (a new~RITA agent) *cC perfctm the same task; (2) a
self-modifying agent that performs ARPAnet file-transfer tasks for
the user, modifying itself so that each suktsequent time it performs
the task, it can do so with less help frcm the user; (3) a tutoring
agent that watches an expert demonstrate the use of an irteractive
computer language or local operating system and then creates a
teoaching agent that can help naive users beccme familiar with the
lanquage or system demonstrated by the expert; and (4) a
‘reactive-messaqe creating agent that elicits text from a user (the
sender) and uses it to create a new RITA agent which is a reactive
megsaqge:, the reactive message is then sent to scme other user {(the
recipieft), who interacts with it; and during the course of the ’
interaction, a record of the recipient's resgonses is sert back to
the sender. (Author/CMV)

o ol o oo o o ot oo ook kol st ko o o o b o ROR o sl ol ok ok ook o ol ok ok ek R ko
* Reproductions supplied by EDRS are the best that:can be made *

* from the original document. *
o R o o e ko o o oo R K KR KK o 0 RO A o R KR ok Xk ke

L EELE R

Uy GEPARTMEMTOF HEALTH .
EQUEATION A WELT ARE ARF 2 i . AT
NATIONAL INSTITUTE OF RPA ORDER NO.: 3473

EDUCATION . P10 Information Processing Techniques

e DUCUMIRT HaS NEEN HE PP
BUEED FXACTLY AN HECTVED FHOM
TRIE PP ViRl OH CHGANIZATION OHIGIN:
FUIMG T PREHTSOF VIEW OH CIIHITTNY
STATED GO HOT HELESRSARILY HEFHE -
SERTOFFICIAL NATIONAL TRSTITUTE OF
P ATIEIR PLinTTHOMN O P Y

ED167119

R-2171-ARPA
February 1978

Rule-Directed Interactive
Transaction Agents: An Approach
to Knuwledge Acquisition

D. A. Waterman |
A Report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

\ _ _ SANTA MONICA, CA. 90406 x
- ot -)
- E: B ==

-)
i

KOO G F@D

@ .

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED -

PAruntext provided by eric

O

ERIC

Aruitoxt provided by Eic:

PREFACE

This report describes results achieved Ly applying current production systera
technology, as embodied in the Rule-directed Interactive Transaction Agent (RITA)
gystem, to the nroblem of developing computer programs th. t are cupahle of' learn-
ing new facts +d procedures by observing and interacling with a user. RITA was
developed unc th~sponsorship of the Information Processing Techniques Office of
the Defense Auv. v d Research Projects Agency (ARPA) for us2 as a fyont end to
remote computi. + 2ms, and as a limited heuristic modeling wol. Here its use ax
a man-machine interace that can acquire or learn new information is explored in
depth.

The report documents the current status of o Rand effort to develop rophi-ticat-
tion of knowledge that should help users interface comfortably withi complex com-
puter operating systems, The work described here, representing a first step in the
development of knowledge acquisition techniques, should be of interc~t to computer
and information scientists involved in matching the needs and abilities of computer

programs and program synthesis.

‘-LJ

iii

SUMMARY

This report describes the development of computer programs called user agents,
which, through interaction with users, can either learn new facts and store them
in a data base or learn new procedures for data manipulation and represent them
as programs. These programs are written in RITA, the Rule-directed Interactive
Transaction Agent system, and are organized as sets of IF-THEN rules or “produc-
tion systems.” The programs are able to act as “personal computer agents” to
perform a variety of tasks,

Four types of RITA agents are described:

1.

An exemplary programmiug agent that watches a user perform an arbi-
trary series of operations on the computer and then writes a program (a
new RITA agent) to perform the same task.

A self-modifying agent that performs ARPAnet file-transfer tasks for the
user, modifying itself so that each subscquent time it performs the task, it
can do so with less help from the user.

A tutoring agent that watches an expert demonstrate the use of an interac-
tive computer language or local operating system and then creates a teach-
ing agent that can help naive users become familiar with the language or
gystem demonstrated by the expert.

A reactive-message creating agent that elicits text from a user (the sender)
and uses it to create a new RITA agent which is a reactive message; the
reactive message i then sent to some other user (the recipient), who in-
terncts with it. During the course of the interaction, a record of the recipi-
ent’s responses is sent back to the sender.

ACKNOWLEDGMENTS

The comments and criticisms of Robert H. Anderson and other staff members
of the Information Seiences Department at The Rand Corporation are pratefully
acknowledged.

e

£

CONTENTS
ACKNOWILEDGMENTS. ... e e vii
Section
Il KNUWLEDGE ACQUISITIONt i 4

Exemplary Programmingo, Y
User Agents i i i e ciisiass e D
III. PROGRAM CREATION THROUGH USER AGENTS............... 10
EP-1: An Exemplary ngrammmgAgent...“....”..,,,“,.!” 10
TRANSFER: A File-Transfer Agentcooovvin 19
IV. DATA ACQUISITION THROUGH USER AGENTS................. 23
TEACH: A Tutoring Agentc.coovviiviiiniarsensenn.. 28
TUTOR: A Passive Exemplary Programming Agent 25
Reactive-Message Agents. vt v iiiiiininen, .. 25
V. CONCLUSIONS...... P 1+
Appendix
A. A RITA Agent that Transfers a File from an Arbitrary
ARPAnet Site to Rand-UNIX - ¥
B. A Protocol of a User Running the TASK Agent 40
C. A Protocol of a User-TEACH Interactmn.i.i.......i..,!.” 42
D. A Protocol of a User-TUTOR Interaction To Create
a Program To Teach LISP.................. - Y
E. A Protocol of the Use of the TEACH Agent Created
for LISP e e e 49
BTBLIOC}RAPHY 51

2l
ix b

I. INTRODUCTION

RITA is a specialized software system that combines production-system control
structure with man-machine dgsngn technology (Anderson and Gitlogly, 1976¢). The
goal‘of the RITA design and development effort is to produce a system that can
ultlmately reside in a computer terminal and execute programs, culled agents,
which provide an intelligent interface between the user and the outside computer
world. The RITA architecture is interesting and useful for three reasons: First, the
use of a production-system control structure provides the degree of simplicity and
modularity needed to make program organization straightforward and program
modification relatively easy. Second, the system is human-engineered in the sense
that the programs, or RITA agents, have an English-like syntax which makes them
easy to write and understand. Thus it is possible to create RITA agents that are
self'documenting. Finally, language primitives in RITA permit the user to interact
with other computer systems, even to the extent of initiating and monitoring several
jobs in parallel on external systems.

RITA is the embodiment of a particular production-system archltecture that is,
within the RITA system one can create specific production systems or RITA agents.
Production systems have a long and diverse history, originating from early work in
symbolic logic (Post, 1943). Current production systems can be thought’ of as a
generalization of Markov normal algorithms (Markov, 1954; Galler and Perlis,
1970). A production system is a collection of rules of the form conditions — ‘actions
(Newell and Simon, 1972; Waterman, 1976b; Waterman and Hayes-Roth, 1978),

‘where the conditions are statements about the contents of a global data base and

the actions are procedures that may alter the contents of that data base. Many types
of production system architectures have been developed in the past few years. Some
are designed to facilitate adaptive behavior (Waterman, 1970, 1975, 197€a), some to
model human cognition and memory (Newell, 1972, 1973; Newell and McDermott,
1974), and others to study the usefulness of production-system control structures in
artificial-intelligence tasks (Buchanan and Sridharan, 1973; Lenat, 1976; Rychener,
1975, 1976; Vere, 1975). What these architectures have in common is that they are
all left-hand-side (LHS) or condition-driven, i.e., when all the conditions of a produc-
tion rule are true with respect to the data base, the rule “fires,” causing the associat-

“ed actions to be executed. Another type of production-system architecture currently

in use is based on a right-hand-side (RHS) or action-driven* control structure (Ander-
son and Gillogly, 1976a; Davis, et al., 1975; Davis, 1976; Duda, Hart, and Nilsson,
1976, Kiahr, 1975; Shortliffe, 1976). Here the system is given a condition to make -
true, a premise to prove, or, in effect, a question to answer through deductive
inference. The right-hand sides of rules are examined to find one which, when
executed, will make the desired condition true or prove the premise being deduced.
When such a rule is found, its left-hand side is examined to see if all its conditions
are true. If they are, the rule is fired; il not, the process continues recursively in an
attempt to make each condition in the left-hand side of the rule true.

The RITA architecture encompasses both LHS and RHS control schemas; thus,

= Also referred to us goal-driven, consequent-driven, or backward-chaining,

1

¢

it is possible to create RITA agents which ure entirely LHS-driven, entirely RHS-
driven, or some combination of both, The production rules accessed from the LIS
are called rules, and those accedsed from the RHS are called goals, They both operate
on a data base composed of objects for which attributes and values have been defined.
An example of'a simple RITA agent is shown in Fig. 1. When this agent is executed,
Rule 1 fires, because all three of its premises are true. Firing the rule consists of
executing its actions, in this case 1 deduce and o send. When the deduee is executed,
it initintes adeduction for the type of the operating system. This means that all goals
are searched to find one whose set of actions modifies the type of “he operating
system. Since Goal 1 is applicable, it is used to deduce this information, and the data
base is automatically updated once the information is obtained. Finally, the second
action of Rule 1, the send, is exccuted and the sentence “This is a TENEX system”
is printed at the user’s terminal.

This report is concerned with the desipn and development of RITA agents that
can acquire knowledge through intcractions with ugers or external computer pro-
grams, The knowledge can be represented either as fucts stored in a data base or as
procedures for data manipulation which are stored in production-rule form. The
general problem of knowledge acquisition within the personal computer framework
is discussed in Sec. II. The remainder of the report consists of specific examples of
agents that can acquire knowledge.

DATA BASE

ORJECT operating-system:
host-computer IS "PDP-10",
prompt-character IS "@",
net-nddress IS "sumex-aim";

OBJECT operating-system:
type - IS "UNIX",
host-computer IS "PDP-11",
prompt-character IS "%",
net-address IS “rand-unix”;

RULE SET
RULE 1:
[F: {HERE IS an operating-system
WHOSE host-computer IS KNOWN ,
AND WHOSE prompt-character IS KNOWN
AND WHOSE type IS NOT KNOWN
THEN: DEDUCE the type OF the operating-system
AND SEND concat(“This is a ",
the type OF the operating-system,
“ system””) TO user;
GOAL 1: o .
IF: the host-computer of the operating-system IS “PDP-10"
AND the prompt-character of the operating-system IS '@

THEN: SET the type OF the operatingsystem TO "TENEX"; -

Fig. 1—An example of a RIT'A agent using both LHS-driven
and RHSdriven productior: rules. (RITA reserved Wr:f!rgs
are shown in upper case without quotation marks.) .

b

B

* thrust of this activity has been the creation of high-level, speciX|

1. KNOWLEDGE ACQUISITION

Creating and debugging programs is clearly an‘important and diflicult task, one
that. consumes an inordinate amount of time and energy. For this reason, much
effort has beeh devoted to develpping methods for making programming easier. One

such as PLANNER (Hewitt, 1972), CONNIVER (Sussman and\McDermott, 1972),
QA4 (Rulifson et al., 1972), and KRL (Bobrow and Winograd, 1976), to mention just
a few. These languages have sophisticated mechanisms built in for commonly used
processes such as pattern- -matching and backtracking,

Another approach to the problem has been the dEVElemEnt of tecthuea for
automatically creating warkmg computer programs, Thla research has taken sev-
eral different paths: program synthesis by selection (Goldberg, 1975), where the user
provides information about his particular application and the system integrates that
information into an existing program or puts together a program from modules
selected by the user; program synthesis from rule-based specifications (Green and
Barstow, 1975; Manna and Waldinger, 1975), where rules about programming are
accessed by pattern-directed invocation; program synthesis through natural-lan-
guage understanding (Balzer, 1972,1973; Buchanan, 1974; Lenat, 1975), where the

task is specified interactively or in some domﬂm-dependent language and thesystem, -

must understand the task and nap it into executable code; and program synthesis
from examples (Biermann and Krishnaswamy, 1974; Biermann, 1976; Siklossy and

Sykes, 1975; Green, et al., 1974; Green, 1976), where the partial states of the processi.
ing are presented and the system must use these to generate the program -

P
. =
) gJ B k":":', ;’- >
" 5

'EXEMPLARY PROGRAMMING . ¢/

Exemplary programming (EP) is a type of program sy(nthesls by example that
relies on program specification from examples or traces of the activity to be per-

formed. The user tells the EP system what he wants done by actually doing it rather

than by presenting the system with a geneml description of the process. The primary .
difficulty with this approach is in providing the EP system with techniques for
making generalizations about what the user has done. This can be accomplished
either by building into the system domain- specific knowledge for making inferences;
about which aspects of the process are invariant and which are not, or by permlttmgxl

the system to interact with the user to extract this information. A program is

usually- thought of as procedural knowledge, but the distinction between procedural
and declarative knowledge is often blurred. Although we will distinguish between
the acquisition of procedural knowledge (program creation) and the acquisition of
declarative knowledge (data acquisition), both-processes will be termed knowledge
acquisition, and the acquisition of procedural or declarative knowledge through
analysis of examples obtained via man-machine mteractmn will be called exemplary
programming. - :

In its most basic form, EP may be defined as the user and the machine working
together to provide the machine with the knowledge it needs to perform some task’

4

LU

. . .

for the user. This report explores the £P approach to providing the machine with
information, as well as several more conventional metheds, within the framework

" of the intrractive transaction agent, called o user agent.

USER AGENTS
A user agent'is a program that can act as an interface between the user and the
local or external computer systems he rmght want to accegs. This type a;"ﬁrogram
is usually small and often resides in a user’s terminal (or in a portion of a central
timesharing system). The agent typically displays many of the characteristics of a
human assistant. For example, it may have the ability to carry on a dialogue with
either the user or external computer systems, It may have specific knowledge about
particular users, i.e., user A wants his majl retrlev&d from system X every Friday
at 10 A.M., or user B tends to accidentally invert pau‘s of letters when he types, often
typing "lgoin” for “login.” The user agent may also have the ability to interact with
other agents that are currently operational in the terminal or even to create other
agents and initiate their operation. _
. User agents can be classified along two different dimensions: one which describes
the way the agent relates to the user, and another which describes the knowledge

* acquisition capability of the agent. The agent can relate to the user in a very direct

way and hence be considered an active agent, or it can relate in a very indirect way
and be considered a passive agent. Neither of these classifications is absolute; actual
agents can exhibit both active and passive properties to a varying degree. '

The active agent, as shown in Fig. 2, stands between the user and the external
system, hiding the characteristics of that system. The agent may carry on a dialogue
with the user in one language and with the external system in another, never
permitting the user to talk directly to the external system. This type of agent cah
take the user’s input, translate it into something the external system will under-
stand, and immediately send it to the system. Or it may gather a large amount of
knowledge from the user, process. it, and then use it later to perfor!m some task for
the user. Alternatively,"the agent may never interact'with the user but may instead
perform some periodic, routine task and leave the result where the user can find it
when he wants it.)

SYSTEM

Fig. 2—Actjve user agent

In contrast, a passive agent, as shown in Fig. 3, passes the user’s input directly
Lo the external system and passea the system’s reply directly back to the user, Thus
it maintains a low proﬁle, giving the user the impression thﬂt he is talking directly
to the other system. The passive agent tends to let the usér take the initiative and
guide the course of the interaction, i.e., the user may ask the agent questions, give
it commands, and generally maintain control of the situation. The active agent, on

the other hand, may try to accomplish a particular task in some prespecified way .

and often maintains control, by querying the user when task-specific information is
needed and then supplying him with the result when the task is completed.

o
SER - . User T
USER agent | SYSTEM

Fig. 3—Passive user agent

i
\

. If the user agent is classified in terms of its knowledge ac’:quisitia}i capability, it
may be termed either static (incapable of permanently acquiring new knowledge) or
dynamic (able to acquire new knowledge and later use it in new situations), fh this
report, we are particularly concerned with dynamic agents and will further flassify

them as being either creative or adaptive. A creative agent is one that in sorfle sense -

creates, builds, or modifies another agent. It acquires information and then repre-
sents this information in a form that car be used by some other agent. Figure 4
illustrates the operation of a creative agent.

Information
v o 4= SYSTEM
. lnfcrmatmn Creative
USER =———————p “uger :
agent
R - -
Acquired f/
‘ ‘ knowledge
New task e
agent - :
5 _ -

Fig. 4—Operation of a creative user agent

R I3

o

by the new agent. Thls kngwledge is exther in declaxatwe form (data) or procedural

~ form (rules) and is saved as part of the new agent.

The adaptlve agent is simildr to the creative one in that it also maps external
informatmn mta permanent data or rules The dlﬂ'erence 15 that the sdaptlve agent

also be clsssnﬁed as acqmrmg exther data or both program and data Thus a greatlve :

" agent that mapped its knowledge into both rules and data objects for a new RITA

agent wcmld be éla’ssiﬁed asa creative/ pmgram t_vpe anversely, an adaptive agent

classified as an adaptlve/data typ& Df agent

" Information Adaptive | Information B
USER - > " user, *l\ﬁ‘ SYSTEM
agent \\
- AN Acquired
I knowledge ;
| Modification | . |roreoRe
_toexisting, |
© agent '

Fig. 5—Operation of an adaptive user agent

APPLICATIQNS

, User agents can perf‘orm a variety of tasks. One xmportant task is that Qf‘
interfacing the user to external systems, i.e., providing the user with active help in

"learning and using complex remote systems. A good example of this type of remote
© gystem is the New York TimesInformation Bank (NYTIB), which contains abstracts -

of recent news. articles. In this situation, the agent could query the user about what
klnds of abstracts he wanted ta retneve and could then access the NYTIB and

and the NYTIB answermg all the quenes from the NYTIB that 1t could and map=

. ping_those it_could not answer into a form mtelhglble to_the user so_that he could
. .-answer them in real time. In general, whenthe user is interacting with an external

system whose characteristics he wants to learn, such as an' interactive program-
‘mmgdanguage interpreter, he shouldchave available a passive help and tutoring -
'FEL‘lllty which does not mask any of the characteristics of the system, If he wants
"only to expedite the interaction, then an active agent is usually appropriate.
Another 1mpqﬁ'§nt type of task that user agents can perform is message-han-,
» dling (Anderson, 1977). This includes reading and analyzmg mcammg mail and

informing the user when important or high- prmrlty messages arrive. Agents could
also be designed to initiate mail under certain circumstances and even ta respond
to the replies that'were elicited. For example, if the agent were trying to use a local
system, such as a network control program, and got error messages when attempting
to call it, the agent could send a message to the person responsible for maintaining

‘the system, asking fot help or maintenance. Sophisticated agents could be used to

help prepare outgoing mail; they could assemble and update form letters or even
query the user to obtam information needed to create reactive messages (see Sec

V).

remote installations, initiating and running jobs such as statistical analysis pro-

grams on a remote computer, and mansgmg transactlons between services distrib-

uted over the network, Secretarial services that could be handled include reminding
the user of appointments, trips, deadlines, etc., and recording the outcomes for

future reference. Accounting operations include filling out timesheets, travel forms,

or any other type of questionnaire needed for accounting purposes. For example, the
agent might activate itself every two weeks, ask the user how his time was spent,

use the information to fill out the user’s timesheet, and then send the. cnmpleted -

farm tn the account;ng department

and carrectmn If‘ an agent could mamtam an accurate model uf‘ the user and hlE

current intentions within some limited domain of activity, it could recognize the
user’s errors and automatically correct them before passing his response on to the

system being accessed. Such an agent would: provide more personalized correction.

than the DWIM feature in INTERLISP (Teitelman, 1975), which applies general-
purpose spelling and syntax correction routines to 1nput dealing with defining and
debugging of LISP programs.

RITA agents are like any other computer programs in the sense that once they
are demgned to perform some specific task, they must be modified or reprogrammed
before-they can perform different or additional tasks, However, the language has
been designed to make this modification or reprogramming as simple as possible,
mainly through the provision of a modular, stylized syntax which can be written to
resemble a few basic English constructs. Still, the job of making major modifications
to a RITA agent or of creating a new RITA agent to perform some new task is
difficult for the novice: The solution proposed here is to handle the task of changing
or creating a RITA agent in exactly the same way the tasks mentioned above are
handled: by using a RITA agent to assist the user. Creative and adaptive agents—
relatively sgphlstlcated knowledge-acquiring agents—can be used to perform this

type of complex information processing. -

To illustrate the feasibility of this approach we have devoted the remamder of
this report to the discussion of four dynamic RITA agents which have been imple-

"mented and their offspring, static RITA dgents that perform simple tasks for the
- 'user. These agents are summarized in Table 1.

EP-1 watches a user perform a series of operations on the computer and then
attempts to write a program (another agent called TASK) to perform the same task.
TRANSFER, the self-modifying agent perfarrns tasks with the help of the user, such

. User agents are particularly useful for providing mundane, periodic services
such as network accessing, secretarial chores, and accounting ~perations. Typical
‘network-accessing operations include sending and retrieving files to and from

MESSA

~Table 1
RITA AceENTs |
- ! Relation ‘Knowledge

- Name Task -~ to User - Acquisition Offspring

EP-1 - Create an agent to Passive/active - Greatwe/pmgram TASK .
perform same job ’ o
for the user)

TUTOR =~ Modify an agent so Passive Creative/data TEACH ~
it will be capable P '
of tutoring the user) '

TRANSFER Assist the userin - Active Adaptive/program- - TRANSFER
retrieving files data :

- via the net '

WRITER . Assist the user in Active c;estwe/data MESSAGE
creating a reactive :
message. .

TASK Péff@:m some low- Active . - Static .None

— level job for the N

1eer

TEACH Assist the user in Passive ' ‘Static None
learning some ‘ .
external system

GE Interact with the Active Static None’

recipientofa , : T
message and send ' '
the result'm'the -

watches an expert demonstrate huw to use an external systern and then modlﬁes

. TEACH so it'can perf'orm the demunstratmns ltSElf TEACH isa teachmg agent that

Dperatlﬂg systems. WRITER isthe agent that 35515ts the user in craatmg MESSAGE
the reactive-message agent. MESSAGE carries on a dialogue with the recipient of
the message, automatically sending the mf‘urmatmﬂ ellt:lted f'rcxm the rec:lplent back

to the sender of the message. -

_ The first four agents in Table 1 are dynamic, thaf is, capable of producing' or

' mad:f‘ymg offspring (other agents). The lest three agents are the offspring produced

by the dynamic agents. Section III describes the EP-1; TASK, and TRANSFER

" ageénts; Sec. IV, the TUTOR and TEACH agents; and Sec. V, the WRITER and

MESSAGE agents Concluding remarks are presented in Sec. VI,

i

!

III. PROGRAM CREATION THROUGH USER AGENTS

Program creation within the production-system framework can proceed quite
naturally in discrete steps or increments. This incremental programming can be
delimited by feedback to the system that describes the problems inherent in the
current code (Waterman, 1975. 1976a). The system would then in effect be writing

and debugging the program mmultaneously The two RITA agents described in this

section use a slightly different approach. These agents create the program incremen-
tally, but debugging (in the.form of extending and refining the program) is done as

a later step. The rationale i is that it is easier and more efficient to create a complete

program that performs the task corréctly most of the time,.then later apply sephls-
ticated debugging techniques to fine-tune the program so that it will produce the
correct output for its range of likely inputs. Here, our concern is with congeptual
" errors rather than syntax errors, since the prog‘ram-creatmg agents can be designed
to avoid making syntax errors.

The first two agents discussed below, EP-1 and TRANSFER ‘are program crea-
tors, i.€., they transform procedural knowledge into RITA rules or goals. The organi-

~ zation® snd Dperatmn of these two user agents will be described in detail.

EP-1: AN EKEMPLA'EY PRDGRAMMING AGENT

TUTTTTEPTIs ERITA agent 1hat watches the user mteract with an external computér' e

system and th¥n creates a-new- agent to- perform-the task-it-saw-the-user. perfgrm
The information used to create the new TASK agent is derived two ways: (1) passive-

ly, as EP-1 observes the actions of the user and the associated responses of the -
__external systém, and (2) actively, as EP-1 queries the user about what he is doing
; durlng the mterac:tmn Thua EPsi has both passive and az:tive Eharaetefisﬁcs al;

and the external s_ystem is dlagrammed in Flg 6. : .
- Initially, the user sends task commands to the external system and receives

system responses, using EP-1 as an intermedjary that passes the messages back and
forth and asks questions about what is happening. The knowledge acquired from this
interaction is used to create the TASK agent incrementally, as the user performs

the task. When the user is finished, TASK is complete and can then be used to |
perform the ‘task, as shown by the dotted lines in Fig. 6. TASK may itself be an .

interactive program that queries the user when it needs help or information. -

MﬁdES of Operatmn p :

" EP-1 currently has one mcde of operation, the acqmsmon ‘mode, but will even-:

tually incorporate a training mode. In the acquisition mode, EP-1 watches the user
perform some mteractlve task asks the user approprlate questlons about the task

51tuatlon, is reqersed. The user watches EP lruna rule set whu:h performs some

interactive task. Whenever the rule set responds incorrectly to the system it is

"16

10

‘Task commands - f :
- — " EXTERNAL
System | responses SYSTEM

Yl

Answers
AGENT -

Questions

l

L

| — |

l i | Acquired | l

| } | kuowledge : | I ‘

— I | Reguést to , _ 7{7 . ; l . |
I LU N | ﬁ?ﬂiﬂmaﬂd;! |
I ‘ TASK |

orfemioldoningk | AGENT System responses |

Fig. ﬁ—tInfarmatioﬂ flow in EP-1 agent

_possibly why it should have ‘been made), and the EP agent modifies the.rule set so

“that it will thereafter make the correct response in that situation. The acquisition
mode is essentially a program-writing mode in which EP-1, with the help of the user,
is able to write a program from scratch. By contrast, the training mode is a debug-
ging moderiﬁ which-EP-1.can. debug the program it creates during acquisition.

— gqulsltmn Mode- e e # e ot

: Ideally, we would like EPal to mnmtor the behavior of the user, analyze that
- behavior, and from it create new RITA agents to duplicate the behavior, without
* having to interrogate the user. The questioning of the user by EP-1 is necessary -
! because the current version is quite general: No dﬂmsm-speclﬁé knowledge is built ‘
into the agent: The questioning can be reduced or eliminated by adding such knowl-
edge, but care must be taken to ensure that the rules produced use object, attribute,
and value names that are mnemonic, and that the rules have no unneﬂessary
prermses
: Current Implementatmn As a first pass at develnpmg an EP agent, we have
created a working RITA program which operates in the acquisition mode. It watches
"the user perform a task and then creates a new RITA agent capable of performing
the same task. The operation of EP-1 during- acqulaltmn consists uf‘ an mltiahzatmn

Et'ep ‘_ ' Yy ’ - ’ !

—-interacting with, the user-tells EP-1 what the correct response: should- havebeen(and- - —

. The_ueer,ie asked to supply a name for each type of information that will -

» . 3 be relevant for this particular task. This includes both general information
7 and 1/0 (input/output) information.
and repetitions of the following basic cycle: '

e« The user is told to start the protocol. He then sends a meeeege to the
external system he is 1nte"e.,tmg with and receives the reply from that
system. '

« The user is asked for the current value of each type ef mfermetlen he

C R earlier declared relevant.
7y, o A RITA rule is crea..d whose premises reflect the state of the relevent
_information before the-user made his last response, and whose actions
reflect the last response of the user and its eff'ect on the stete of the relevant
" information.
' The user is asked to continue the proteeel and the cycle is repeated until
the user typee "‘ﬁmehed‘” in response to the eontmue protocol” message.

Te illustrate thle sequence, assume that the user telle EP chet the following
three typee of information are relevant:)

¢ The name of the current eyetem (the name ef the bperetmg eyetem or
. program the user or agent is currently aecesemg)

+ The state of the egent (a term deecr;bmg what the agent is currently trying

to dccomplish, i.e., “logging in,” or “giving paseward ")

T e The value of the response (the response the user or agent reeemes from -

the exterrml system, ‘.e., "host: "frem the ‘FTP program.)

Furthermore the user epee;ﬁee thet velﬁe ef response is I/D infermetmn
retiefnﬂget.e beek a “%,“ end telle E’f‘i 1 that the name of the currept eyetem is* umx
and the. state of the agent is “use the ftp program.” In this situation, the dialogue

~ shown in Fig. 7 would lead to the creation cf a new rule. .

- EP-1:- Pleeee continun the pratecnl
USER: ftp ' :
. SYSTEM: HOST: :
e ' : 'EP-1:- What is the name of the current-ey: etem'?
' ' 'USER: file transfer program :
EP-1: What is the state of the agent? :
__USER: give the host name L

Flg 7EDlelog’ue needed for rule creation -

v

At thxs point, EP-1 creates a rule using the mfermetmn just’ ellclted from the user .

and the mfarmetxen elicited in the previous cyele The rule created weuld be enmler
to the one below:’

e

i

: RULE n
- o ' IF the name of the current!system is “unix”

and the state of the agent.is “use ftp”
and the value of the response contains a {*‘% “}

THEN: set the name of the currer;!;—system to “file transfer grograrn
and set the state of the'agent to “give .the host name”
and set the value-of the response to **."
‘and set the reply uf the agent to “ftp”;

-2 Arule at the beglnnmg of the rule set being creat:ecl aends the reply of the agent :
) in this case “ftp,” to the external system. Thus when rule n is fired, it will send “ftp”
to unix and set the values of the relevant objects appropnately
. As the user is interacting with the external system, the EP agent is momtormg .
’ " the interaction, asking questions, creaving RITA rules, and storing them in a disk
"'file. When the user is finished with his task, the EP agent is also finished with the
job of creating the new rule set or agent, and this rule set is available for immediate
use. The user is not required to examine or modify the rule sP* in any way before
he .uses it to accomplish the desired task.
~ To illustrate more fully-the operation of EP-1 durmg the apqmmtmn phase an
-actual protocol of a very simple user-learner interaction is shown below, The task-
is to determine who is currently using.-the unix system. User input is ‘shown in
italics, EP agent response in normal type, and system response in boldface.

: *run;
- e ‘What task are you going tc pertormf - T -
s B Sgemg who is using unix . R o -
What is relevant? e oL e '
. . .the name of the current system ..., o o
- o What else? . o
~.the state of the agent -

What else? '
nothing T o

- What do you want to call the I/@'?
- the ualue of the response

_Please start the prGtOCD] to be learned

(carriage return)
% o _
What is the name of the current system ?
What is the state of the agent ?
use the who command

_Please continue the protocol to be learned

a3

14

who

k2240 ttya Jul 6 15:26

don ttyf Jul 6 15:22
What is the name of the current system ?
. (carriage return)

. What is the state of the agent ?
: qu.!.t

Please continue the protocol to be learned

finished
" done .
The following RITA rules were written by EP-1 during the above interactio;n_
[DBJECTS?] |
DBJECT agent-::‘l::«
QBJECT current-systgmﬁil:?

DBJECT‘ responseil?:
_value IS™ 7,

o i T input IS8T,
T C " ‘count IS “0%

. [RULES] ~
" RULE I

IR the prompt OF the agent IS KNOWN

) THEN SEND the prompt-OF the agent TO user o o

T & RECEIVE the NEXT { ANYTHING ‘line-contents’

v ce FOLLOWED BY “*j”}t FOR 15 SECONDS FROM user

. : & SET the the new=reply OF the agent TO ‘line-contents’
e) oL T & SET the prompt OF the agent T 0 NDT KNOWN,;

_ = IF the new-reply OF the agent IS KN OWN

o . & the new-reply OF the agent IS 1 OT “ noo)
o ' THEN SET the reply OF. the agent TO the new rEply OF the agernt '

- & SET the new=reply OF the agent TO " ™ .

' RULE 3: ‘
O - _ IF; ;the reply OF the sgent IS KNOWN _
. - " THEN: SEND the reply OF the agent TO system
" : ' ' & SEND " " TO uger ‘

TThis statement reads the next line typed in by the user and calls it ‘line-contents’, stripping
+ + off the termmatmg earrmge return (repreaented by * *ji"n . .

Y
¥
i

b LI

20

15

& SEND canca{i 'Sent " the ;reply; OF the \a'gent) TO user. |

RULE 4: ’
‘ IF: the name OF the current-system IS NOT KNDWN

. & the state OF the agent IS NOT KNOWN
& the value OF the response CONTAINS (" ™}
THEN: SET the name OF the current-system TO "unix”
& SET the state OF the agent TO "use the why ccmmand"
& SET the value OF the response TO “ .
& SET the reply OF the agent.TO * "

RULE 5:
. IF: the name OF the current-system IS “unix™ .
& the state OF the agent IS “use the 'who command”
& the value OF the response CONTAINS {“% '}
THEN: SET the state OF the agent TO “quit”
& SET the value OF the response TO" ”
& SE‘T the reply OF the agent TO “who'';

++RULE 6
. IF; the state OF the agent IS "quit”
‘& the value OF the response CONTAINS{“% "}
- THEN: SEND “Seeing who is using unix has been cumpleted"
TO user -

: EULE T . : :
IF ‘the mput OF the response IS "

, & the count OF the response IS LESS THAN 20 s
THEN: RECEIVE FOR 5 SECONDS FROM system .
AS the input OF the response
& SET the count OF the response TQ

1 +?the count OF the response;-

* RULES8: ’
_IF: the ¢count OF the response IS LESS THAN 20
THEN SET the value OF the response TO
, concat(the value OF the response,
s “the mput OF the response) .
& SET the input OF the response TO * .
& SET the count OF the response TO 0
» & SEND cuncat(“got ” the value C)F the reaponse) -

— & RETURN:SUCCESS;— e

T

TO user;" A

'i‘he first three rulea are standard rules always generated to handlé the mechan-
ics af‘ sending messages specified by the other rules to either the user or the external
aystem The last two rules are used to look for the response from the external system

System never bothers to respond Rules 4,5,and 6 are the ones that deﬁne thé actual

and to limit the time expended so thiit the agent won't go into a loop if the eggarﬁ“l"fﬁ*

16

it elicits a %), using the “who" command, and then halting. :

" The actual protocol produced by running the above rule set created by EP-1 is
shown below. User input is shown in italics, EP agent response in normal type, and
system response in boldface. " '

¥ run;

sent: (carriage-return)

got: % . S
A - - sent: who . : ‘
. - got: jal' tty9 Jul 18 18:35 - -
: leone ttyd Jul 18 17:44 ' ?"7-"-\

lai ttyi Jul 18 17:30 - - K ' -
~don ttym Jul 18 16:38 :
o - % - |
- Seeing who is using unix has been completed
* exit; , ‘
Apperldlx A presents a camplex RITA agent ertten by EP-1. This task agent

a RAND unix file. It interrogates the user, askmg hlrn f'or the ﬁlawlng mfurmstmn

" task: that of checking to see if unix is running (entering a carriage return: tc: see 1f' o

autamatlcally retrieves files from rerm:ste siteson the ARPAnet and copies them into i

— e — S S S

.+ Remote- site -name.
o Account name at that site.-
« Password at that site.
, o » Name of file to be retrieved. -+ -’
o o . New name for retrieved file,

- If the user fails to respond toa queatmn \wthm a reasonable IEngth af time (currently

»_—-~ — ;' —--153econds), the agent goes on to the next question and assigns the default answer
for the unanswered question. As the agent obtains- the information it neecls, it'calls .
‘the local file-transfer program, answers its questions, and initiates the retrieval. .

i

"When the retrieval is complete, the agent informs the user.of this fact and halts.

“user transfer a file from the Carnegie-Mellgn University PDP-10 system to the
'RAND unix system. During the interaction, the user indicated which items of infor-
mdtion were to be considered variables by appendmg a colon and prompt to the user

{‘;P o responses that defined those items, F‘lgure 8, whmh is.a continuation of the dlalogue ’

_of F;g 1, lllustrateg this. process.———— _;;u.--s;-——7-:-:—«»—&»?:»7»—?-‘—'- -

. The file-transfer agent'shown in App. A was written by EP-1 as it watched the -

17

EP-1; Please continue the protocol

USER: cmu-10a:What system shall I retrieve the file frcm’*

,SYSTEM: Connections established. :

300 CMU10A 7.U5/DEC 5.06B FTP Server 4(30)

. - . :
EP-1:. What is the name of the current-system? -

USER: (carriage-return) - ' D e
EP-1: What is the state Qf‘ the agent’? T '

_USER: login

R o Fig. Eleaiague lllustratmg creatmn af rules w;th prc;mpts

‘f" o The rule that would be created from the dlalc:)gue of Flg 8 is shown belc)w (zee Appi
D . A, Rule 5)..

RULE m L
[F: the name of the current-system is
“file transfer program”
and the state of the agent is gwe the host name”
.and the value of the I‘ESPDHSE contains {“Host: '}

H;'

THEN set the state of‘ the agent ta “lagm
))

o and set the prompt of the agent tc:
<" “What system shall I retneve the ﬂIe from?. .

u!

. A rule at the begmnmg of the agent being created sends the value assumated th;h
“the pml‘npt of the agent” (in the above example, the "What system . .- message)
’ . to the user and then passes the user’s reply on to the external syst;em If’ the user
v - does not-resppnd to the prompt in timé (or responds- wﬂ:h a carriage return), the
o agent replies for the user, sending the value associated Wth “the reply of the agent?’
(in the above example, “crm-10a") to the external system The above rule does not
reset “‘the name of the: current-system,”” because the user indicated that this infor-
e mation" wag not ciirrently relevant by entering a carriage return rather thanthe
TEETTT T T getual name of the current system durmg the dlalogue that led tc» the crEEtmn of
’ the rule (see Fig. 8). P
The operation of the task agent created by EPI is- 1llustrsted in the protocol
S .- given in App. B.Note that in some cases the messagessent by the agent were garbled ‘
. * + «during transmission, and the agent received ur unexpected error messages_from- theA S
I ~extemal‘system “In these « cases, ‘the agent correctly backed up to the apprgprlate '
spot.in the sequence of operations and repeated the messages unt;ll they were cor-
‘rectly transmitted and received. '
‘Expansion. Thisinitial version of'an EP agent could be expsnded in-a number
_ of ways to make the acquisition phase more effective. First, a more sophisticated
-~ method could be developed for determmmg what part of the. external response (the.
1/0 information) should be used ‘in the rule being created at each step: In the
previous exathple there was no problem: The response was “% ,” so the entire
) resporise could be used in the leﬁ; -hand sxde of the rule as part of the premise.

A

18 .

However, when the response consists of many lines and is not always exactly the
same for the same input to the external system, then something more is needed. The
current implémentation of the EP agent handles the prablen by. simply using the
first ncharacters of the last line the external system gives as a response. This could -
be slightly improved by using the first n characters of both the first and Jast lines. _
.However, to effect any significant improvement it would be necessary to build into
EP-1 specific knowledge about the tasks it could be asked to learn, plus rules telling
it how to decide what components of the system response are likely to be invariant .-
(or static infofmation from several different examples would have to be induced).
The alternative would be to have the EP agent learn which components kre invari-
ant through emplrlcal verification, which might prove time-consuming. -

Second, the EP agent could be modified so that it would not ask the user for the
values of the relevant oh_]ects af each step, but instead would supply these .values
'itself. This would reduce the workload on the user but would introduce some difficul-

" ties; (1) The mnemdnics created by the agent would not be as intelligible as those -
‘created by the user, unless the agent had clever heuristics for inferring good mne-
“monics from the trace of the user-system interaction, and (2) global knowledge about
the task being performed would have to be built into the EP agent so that it could
infer the values of the relevant objects, e.g., it would have to know that if the user _

types a carriage returnand gets back a “% ,” the name of the current system is unix.

This type of inference is hurrently made by TRANSFER (the agent dlscussed next

_in this section).
F:mally, the EP agent could be rnade not only creative but also adaptive. The

. result would be an agent capable of creating new agents, debugging them, and, in 7

the course of the debugging, madlfymg itself'so that 1t wauld subsequently generate
agents W1th f'ewer bugs. S ,

Trammg Made | .

. The training m@de for the EP agent is not yet 1rnplernented but it will feature

“, «. interactive rule acquisition and modification similar to that in TEIRESIAS (Davis,

1976). What follows is a partial spemﬁcétmn of the features needed in this mode. In

the tralnmg mode, the agent, wn:h the help Df the USBI‘ wxll debug a glven RT I‘A rule

: Eac-h tlme the rule set makes a decision (ﬁres a rule), the EP agent will gIVE the user

- e TTTTaR opportumty to state that an incorrect decision was made and Lnf‘orm the agent -
' ~ of the correct dEC‘lSlOﬂ The EP agent will then correct the rule set being debugged

__ by either adding_ a-new- rulem‘ -modifying-an- existmg ofe. A hypothetical protocol
f‘ar thlS Process is shﬂwn \below ‘

e, " SYSTEM: % \ »
‘AGENT: sent: ftp -~ o 3
EP: was this ok?.
USER: yes ' \

SYSTEM: Host: .

AGENT: sent: cmu ‘ 1 o
- EP: was this ok? = - .
USER: cmu-10b not cmu :) _

19

3 . .

'_ Now the EP agent modifies the new agent by changing all occurrences of cmu in the

« . rule that just fired to cmu- IDb it then starts the agent running again. If instead the
" user says, "'ask for site name,'the EP agent adds to the current rule an ac.'tlgn that

queries the user for the site name instead of chSIdermg it mvanant

' - * AGENT: sent: cmu-10b
e , EP: was this ok?
. ! USER: yes
¥ r SYSTEM: Connection established. \ E | 5
' : ' o 300 CMU10B 7.U5/DEC 5.06B FTP Server |
> . : 4.,
‘AGENT: sent: retrieve news &pdata
o , - EP: was this ok?
e : » USER: do: user A330DW28 _
Now the EP agent éd}:ls a new rule that says, in effect, when you get a “Connection .-
, . established” message send "user A330DW28".to the remote system It then starts
' the agent running again.

AGENT: sent: user A330DW28
" EP: was this ok? ‘
USER yes

During training, the EP agent will be able to correct errors that were made -
, . during the acquisition phase. As 111u5trated above, two types of errors will be correct- .

\ ¢ ed: those caused by the user giving the EP agent incorrect information during

e acquisition (e.g., cmu instead of cmu-10b) and those caused by the user failing to
§ C *"supply the EP agent with information -about what to do in a given situation (e.g., .

login before you start retrieval). The EP agent will also be able to create new rules

" that are modifications of existing rules. For example, if the above protoctl continued

with the agent sendmg ‘abc” for the password u%:mu -10b and the current host was

not cmu-10b, the user could iridicate that the pAssword was wrong in this instance

' with “bed this time, not abc.” The EP agent would then query the user to find-that .
0 the current host {say, SRI-Al) was relevant at this point and add’a rule- saymg, in
" effect, that if the host is SRI Al, then the pa.sswurd is “bed.” } -

/ =7 3

o e TRANSFER A FILE-TRANSFER AGENT

o ‘ TRANSFER is'a sophisticated user agent demgned tc: help the uger transf‘er files
T . across the ARPAnet. It differs from the file-transfer agent created by EP-1 in-three
- important respects: First, it contains information about-the chars:tenst;cs of vari-

- ous operating systems, which enables it to recognize which system it is interacting
with and, take the appropriate action, This is part.lcularry 1rnportant when system
“errors occur and the agent ends up talking to an uncxpected system. It.can recover ,
" from such an error only if it knows that.an error has cw:curred and recag*mzes the

system with which it is currently interacting:— - "
The second way in which TRANSFER differs f‘rurn the EP- l-created file-transfer
- _agent is that it has a goal-driven component. TRANSFER initially attempts to

20 .

: & : .
deduce the mﬁ:rmstmn it needs for file transfergthe file name, site name, account -
name, etc, If it fails to find thé information in the data base and cannot, decluce ity

TRANSFER automatically queries the user for the information.-

The third and most important dlﬂ‘erence between the two f file-transfer agents is

" that. TRANSFER is adaptive, i.e., it can modify - 1tself‘ on the.basis of knowledge
gained through interaction. with the user. C)Pce it Dbtams the information it needs
to login to a particular site, it retains it in the form of data objects and goals so it -
~ won't have to query thie user again at some later date for the same information. To
111ustrate a protocol of an actual user-agent mteractmn is shown below. User input
is shown in italics, r*1"LI‘QLNE':FEI?{ response in normial type, and system response in
boldface: -

% rita use.ft.new -
.Ready...

* run;
- What is-the name nf‘ the current-file?
Response: mail .
~ What is the site-name of the Curreﬂt-ﬁle'} ..
Response: aim . :
‘What is the site of the current file?
Response: sumex-aim
What is the: account-name of the currEnt-ﬁ]e‘?
Respcmse alhanabaak :
‘What is the password of the current-file?
ResanSe abedef

""What is the directory of the current—ﬁle? - \
" Response: <aihandbook> .
Will now attémpt to retrieve file e:a;handbook}mall T
from the sumex-aim. system -
Sent: ftp

" Received from net: Host:
Sent: ;éurnex!a;im=
"Received. from ftp: Cphﬁect-igns established.

300 SUMEX-AIM FTP Sérver 1.44.0.0 - at MON 19JUL-76 11:37-PDT

.7

Sent: . user aibandbmk .

Received from ftp: 330 User name accepted. Password, please.

1

Sent: pass abedef

Received from ftp: 230 Login completed.

>

Sent: retrieve <aihandbook >mail fipdata
File has been transferred

Received from fip: 265 SOCK 3276965379
250 ASCII retrieve of <AIHANDBOOK?>PEOPLE,1 started.
252 Trangfer completed.

o

Sent: bye
Job finished
done

* exit;
exiting.

During the course of the above interaction, TRANSFER permsr;en‘tl} acquired
the data objects and goals shown in Fig. 9. This knowledge enabled the agent to
deduce the infcrmation it needed the second time the user asked for the file to be
transferred, as shown by -the partial protocol below:

" % rita use.fl.new

Ready. ..
!

* orun;

What is the name of the current-file?
Response: mail
Wll] now attempt to retrieve file <aihandbook>mail

from the sumex-aim system

Sent: ftp - . ‘ . S

From this point on, the protcol is the same as the one shown earlier for file retrieval
using TRANSFER.

The kr‘mwledge mapped mto RITA goals by TRANSFER could have been repre-
sented more simply as RITA data objects. However, the' use of goals provided’ the -
agent with the implicit question- -asking capability of the goal-driven RITA monitor.

" Thus no rules or goals were needed tbst explicitly directed the agent to ask the user

for information. This request was handled by simply telling the agent to deduce the
information when it was needed. _

[

22

“OBJECT known-files<1>:
names.' IS ("mail™);

OBJECT known-sites<1>:
names, IS ("sumex-aim”);

OBJECT sumex-im«T>7-
aliases IS/(“aim”, "sumex-aim'’),
files IS{ “mail”);

GOAL 5: :
IF: the name OF the current-file IS IN
the files OF the sumex-aim
: =< THEN: SET the site OF the current-file TO "sumex-aim”
¢ . & SET the site-name OF the current-file TO "sumex-aim”;

GOAL 6:
IF; the site OF the current-file IS "sumex-aim"”
_ THEN: SET the password OF the current-file TO “abcdef”
& SET the account-namé OF the current-file TO
“aihandbook’
& SET the account-preface OF the current-ile TO "user”
& SET the password-preface OF the current-file TO'*'pass”;

IF: the site-name OF the current-file IS IN
the aliases OF the sumex-aim
THEN: SET the site OF the current-file TO “sumex-aim”;

IF: the name OF the current-file IS “mail”
THEN: SET the directory OF the current-file TO "*<dihandbook>",

Fig. 9—Data and goals learned by TRANSFER agent

- 28

IV. DATA ACQUISITION THROUGH USER AGENTS

Data acquisition is a much easier task than program creation—it consists simply
of adding new knowledize to the existing data base, However, user agents that
employ data acquisition exhibit many of the dynamic characteristics of the more
powerful program-creating programs. The trick is to organize the agent being
created so that the fixed, unchanging portion of the knowledge it contains is proce-
dural, that is, represented as rules or goals. The fluctuating, context-dependent
portion isthen represented as data for the procedures to operate on: This was the
approach taken in the design of both TEACH and MESSAGE. TUTOR, the agent
that creates TEACH, generates the data base for TEACH, but not the rules that
TEACH uses. Similarly, WRITER, the agent that creates MESSAGE, generates only
thu data baae fc»r MF%“SAGE Thl% rE'ﬂUlL‘s in the cfeatinn uf ufxeful programs because

edge abéut the tgsk to be ;mrformed : -

TEACH: A TUTORING AGENT

TEACH is a RITA agent that can help a user learn how to use interactive
‘computer languages or local operating systems. It works by acting as an invisible
interface between the user and the system the user is trying to learn, passing all
standard user-originated messages to the system and all system-originated messages
back to the user. In addition, TEACH recognizes special user-originated messages

“and responds tothem either by sending appropriate text to the user or by conducting
interactive demonstrations of the system's capabilities: Thus it appears to the user .
that the system he is trying to learn is able to explain and demohstr’age its own
operation.

The TEACH agent consists of 14 short RITA rules which are somewhat domain-
independent, that is, they can be used to teach a variety of languages or operating
systems. The syntax of the special messages TEACH recognizes is quite simple:
either “show me <arbitrary string of char’s>" toelicit an interactive demonstration,
“again” to elicit a new demonstration QI‘ whatever was last demonstrated, or “exit’”*
to terminate the: TEACH program. 'I‘he TEACH data base consists of RITA objects
which are domain-dependent, and thus a different data base must be supplied for
each new language or operating system taught by TEACH. ' '

The TEACH data base contains three types of objects: intros, texts, and dernos.
Each intro contains a piece of text that is elicited when the user types the name of

the intro. A typical name is HELP, which shauld | supply the user with a message
explaining what special messages TEACH recognized=Bagl text Dbject also contains
a piece of text, but this is elicited only when the user types Show me <name of
text>.” For example, if one text object is named “function names,” then when-the
user types “'show me function names” he should elicit a list of all pertinent function

*If the language being taught contains these mes.sages 5 valid commands, they can be mad:ﬁed by.
adding apecial control chﬂracterﬁ)

® 29

24

names. Each demo object contains a list of one or more sequences of commands.
When the user types "show me <name of demo>,” TEACH sends one of the se-
quences of commands to the system in such a way that they appear to be user-
originated messages. The system-originated replies are returned to the user, and
thus the user sees a live demonstration of the system’s capabilities.

When the user loads TEACH, the intro object with the name “what?" is auto-
matically accessed and its text displayed. Thus a user-TEACH interaction might
proceed as follows (user responses are shown in italics):

I3

rita use.leach (user loads the TEACH agent)
Type “help’ for help (automatic intro message from agent)
help (user types “help”)

Type “show me”’ followed (agent digplays text of the INTRO
by “functiong” or (any named "help”)
function name).

Show me funélims (user types "show me functions”)
The available functions (agent digplays example c;t" TEXT
are plus, minus, and div named “functicns”)

“show me plus v) (user types “show me pl\;s")
(demo of plus] - ~ +(agent sends commands and re;:eii}es

responses from system, displaying
all 1/0 to user)

TEACH uses a very simple control mechanism for its demonstrations: It cycles
through a list of commands, sending one to the system, receiving the response from

the system, and then sending the next command in the list, regardless of the value

of the response. This works well for teaching a programming language or local.
operating system because the number of possible responses for any given command

“is low (usually 1). However, this technique could not be used to teach a user how to

interact with a complex system, such as the ARPAnet, which has many possible
responses for any given command. Teaching thig type of system requires an agent
that sends commands based on the responses it receives, as does the TRANSFER

" agent.

There are a number of advantages to using TEACH in conjunction with the

'typlcal _printed reference manual First, the information is cn=lme, so the user
- . always has it available when he-is using the syster. It occurs within the real on-line
“context, so the user can freely mix experiment and query. Second, the demonstra-

tions are live, not canned, which means that if the system changes, the changes will
be seen the next time the demonstration is run. A reference manual with a listing -
of a demonstration would simply become out-of-date, Finally, the demonstration is
a nice way to show the user how to make use of the fac;htms described i in the

’ . v"‘ =
\ : 30 -

26

reference manual. Just giving the user a definition of a comma nd or function usuall y
does not show him how to apply it and make proper use of it in conjunction with
the other system facilities,

A ‘protocol of an actual user-TEACH interaction is shown in App. C. This proto-
- col shows how TEACH can be used to teach a novice how to use commands and
actions in the RITA system.

TUTGR A PASSIVE EXEMPLARY PROGRAMMING AGENT

TEACH is itself created by another RITA agent called TUTOR. A primary
reason for organizing TEACH as a production system was to facilitate its creation
by TUTOR. TUTOR is a passive agent that watches the user demonstrate how to use
certain features of a system and then places the information needed to.recreate that
demonstration into the data base of TEACH. This is another instance of EP. The
difference between this application and the use of EP-1 to create agents from exam-
ples of programming tasks is that with TUTOR the end result is declarative knowl-
edge in the form of RITA objects, while in the case of EP 1 the end result was
procedural knowledge in the form of rules.

A protocol of a user interacting with TUTOR to create a TEACH agent for LISP
(McCarthy et al., 1965) is shown in App. D. The use of the TEACH agent created for
LISP is shown in App. E. Note that by using TUTOR, a LISP expert. who dcesn t
knnw RITA can create a RITA agent to teach LISP.

REACTIVE-MESSAGE AGENTS

The reactive message is an offshoot of an earlier concept, the interactive letter
(Anderson and Gillogly, 1976a; Standish, 1974), which is a letter organized as a
computer program. The recipient of the letter “reads” it by interacting with the -
program. When the dialogue between the user (recipient) and the letter (program)
is concluded, the letter transmits a record of the interaction back to the user who
gent the letter. .

The reactive message is a partu:ular type Qf interactive letter, one in ‘which the
originator-recipient link is a one-to-many mapping. That is, the message is organized
to be general enough to be sent by one originator to many different recipients. It is
this one-to-many mapping that makes the reactive message cost-effective. Reactive
‘messages—form letters, questionnaires, timesheets, etc.—~have been implemented
in RITA as RITA agents which contain not only the message to be transmitted but’
all the machinery needed to initiate a dialogue with a user snd transmlt the result
back to the sender. - i -

The reactive message hasa number of advantages over other, more conventional
forms ‘of communication. First, the act of readmg the message can autcmatlcally
generate a reply which is transmitted back to the originator or sender of the mes-
sage. This means that the sender gets instant response. Also; the recipient doesn't -
have to worry about organizing and forwarding a reply to the message. Second, a

" long message with lots of text can be “read” quickly by the recipient,since-he doesn't
have to look at the entire message. Instead, he takes one path through the message,

37

26

reading only text that is relevant to his purticular situation or interests, Finally, the
reactive message maps the recipient’s replies onto a small set of expected responses,
and thesc mapped replies can easily be read and understood by another program or
agent. This second agent could process this information (e.g., tabulate the results of
all replies to a questionnaire) and transmit the end product to the sender.

There are also certain inherent disadvantages in the use of reactive messages.
From the point of viev' of the sender, the message is difficult to organize and create.
Since it is a program, some thought has to be given to the flow of control and how
it determines which text and questions will be presented in any given context of
recipient replies, Once the message is organized, the physical act of writing the
program is still a problem. This can be alleviated somewhat by having a message-
writing agent help the sender construct the message, but the work involved in
interacting with this agent is still greater than the work involved in creating an-
ordinary piece of computer mail. Moreover, the reactive message presents some
special problems for the recipient. For example, he inight like to read the message
without responding, or just skim it to decide whether or not he wants to actually
read it. An even greater problem is created if he wants to back up to some previous
answer and start over. Providing such capabilities would result in a more complex
control structure for the reactive-message agent, but it would no doubt be worth-
while in terms of usefulness for the recipient. '

Implementation of Reactive[Message Agents

An example of a reactive-message agent is MESSAGE, a RITA agent composed
of seven short production rules and a large data base organized as a simple semantic
net. These context-independent rules are used to search the data base for the next
piece: of text, send that text to the user, and then instigate a new search based on
the user’s reply. All the text of the message is stored in the data base at the nodes
of the net, thus each reactive-message agent has a totally different data hase in
terms of structure and content but exactly the same set of production rules to
perform the search.” *

A sample reactive message data base is illustrated in Fig. 10. Note that there
are two types of nodes in the net: statement nodes and question nodes. Similarly,
there are two types of links: associative and alternative. The associative link con-
nects a statement to a lower node and has no user reply assigned to it.-In contrast,

" the alternative link connects a question to a lower node and always has a user reply

assxgned to it.
-One pasmble user-agent. interaction that this message might evoke is showrl

below:
AGENT: Dear Profesacr)Smich:

I’m currently trying to organize a
weekly seminar on message- handlmg
gystems. The only available day of
the’ week is Tuesday.

*The ASKUSER fscxhty in INTERLI&P (Teitelman, 1975) algu provides -a way of defining o user-

system dialogue, but 1L i8 used more aga suphlshmted prompting rneéhamsm thr.m a8 a messoge- -handling

system . ==

27
“Dear Professor Smith:"

“I'm currently trying Lo organize 4 weekly seminar
on message-handling systems. The only available
day of the week is Tuesday.”

“Would you be interested in attending

”Ci@ﬂd”

. “What lime, between 11 am.
and 4 p.m., is best for you?"

“Noon is a bad

U T 5 ¥ g o) L)
time for most That sounds “I see.”

people.” good to me.”
“What's your
second choice?”
*
“Thanks, I'll gét, back to you when the
responses to this message are tabulated.”
Fig. 10—~Data base for a reactive message
o

ERIC

Aruitoxt provided by Eic:

“Why not?"

#*

“0OK, thanks anyway’
for your response.”

“Goodbye”’

28

Would you be interested in
attending such u series of
seminars?”’
USER: OK, I guess so.
AGENT: Please anawer with either a "“yes"” or "no".
Would you be interested in
attending such a series of
- seminars?"’
USER: Yes I would.
AGENT: Good.

What time, between 1lam
and 4pm, is best for you?

USER: I guess sometime around 12 o’clock.
AGENT: Noon is a bad
time for most’
people.
What’s your
second choice?
USER: 3 in the afternoon.
AGENT: Thanks, I'll get back to
you - when the responses to . .
~ this message are tabulated.

The user- agent interaction cnnsmts of the agent presenting statements and asking

questions and the user answermg those ‘questions. Each. time the agEnt asks a
question, it searches the user’s answer, looking for a reply that matches one assigned
to an alternstwg lower link of that question. If no-match is found (as shown above
by the user's first answer), the set of alternatives-is pfesented to the user and the
question repeated This forces the user to make one of the desired responseg. How-
ever, since it is virtually impossible to predict all reasonable responses the user
might want to make, a special category, designated by the asterisk(*),'is permitted.

"This is the catch-all category and matches any answer the user gives. Thus in the

above example, if the user had replied “2 o’clock” to the question, “What time,
between 11am and 4pm is best for you?,” the agent, after finding that neither 12"
nor "1" was in the user s answer, would have calledita mateh on the third link and

‘responded with, “I see.”

In general the user is forced to make a predetermined response to questlpns
whose alternative links contain no asterisks. He always knows what his options are

in this situation, since an undesired ieply elicts the list of desired responses. On the . ’

other hand, questlons whose alternative links do contain an. asterisk are never
repeated. The user s first reply is always mapped into one Df' the alternatwes

§

‘ 29

for tranam;ttal back to the Eender So if the user rephes yes 1 do, ,smd the agent
is looking for “'yes,” the reply matches but the entire sentence is transmitted back
to the sender, not just the "'yes.” Thus when the user cannot find an alternative he
likes, he can pick one anyway but qualify his reply with extra comments.

Design Considerations

The current design of the reactive message is rather unsophisticated. There are
a number of ways in which it could be extended to make 1t a more effective tool for
communication. Each extension, however, raises a basic des:gn 1ssue wh,;ch rnust he
faced. : : - ‘
Exponential Growth: If the data base is tree—structured its size grows expo-
nentially as questions are added. One way around this problem is to organize the
data base as a net rather than a tree, Then interconnections between arbitrary
nodes eliminate redundancy and thus reduce the size of the data base. In the current
implementation, arbltrary nets are not permltted but sorne mtercﬂnnectmn of nodes
is allowed. .

Natural-Language Processing. The reactive message should be a short, yet
powerful program or agent for eliciting information from a user. These two goals are
not really compatible, however, as natural-language processing is a formidable task.
One problem is synonym recognition. If the user answers "OK” mstead of "yes,” the

" * agent should be able to recognize this as an equivalent reply. Two immediate issues

arise: (1) Should the sender or the message itself take responsibility for defining the

- synonym classes? (2) Once the classés are defined; how should the message go about
mapping the user’s reply into one of the classes? This issue is avmded in the current
lmplementatlon by not allowing synonym recognition. ,

Another: problem that confounds the synonym problem is that of recognizing
logical combinations of replies within a single response. For example, the sender
might want to specify that a particular alternative link should match only if the
user’s response contains either a “yes” or a "no,” or should match if it contains both
a digit and "morning” but not if it also coatams an “except.” Logical combinations -
are not allowed in the current implementation.

Back-up. The recipient of a reactive message doesn't really know where he is
going until he gets there, ie., he can't look ahead to see-what’s coming. Conse-
quently, at some point in the interaction he may decide he made a mistake in a
previous answer and want to change the answer and start fresh from that point. Or
he may want to Stai‘t over frarﬁ“ the beginning, or even Ebm‘t thé messaigg in such

: thaugh sorely needed wﬂl greatly increase the complexlty of the pmgrarn Thisissue -
has not been addressed in the current implementation. '
User-@rlgmated Questmns It wnuld be usaf‘ul to have the message capable

complex natural language processmg Gapablhtles however, whlc:h would prabably'

be unjustifiably costly.-
Machxne—ﬁeadsble Dutput BESldES transmlttmg back to the sender the com-

| »~35f

®

30

expected replies should also be sent. This normalization of the user response would
make it relatively easy for another agent to analyze the response of the user and
make decisions based on that response. '

Creation of Reactive Messages

The reactive message is a fairly complicated program that talks to the user and
records his answers. Writing such programs can be a very tedious and time-consum-
ing task, one that requires remembering exactly where you are at all times in the
tree of questions being generated. To make this job easicer, a second RITA agent
called WRITER has been designed to help the sender create his reactive:message.
WRITER queries the sender, uses his replies to construct the message, and automat:-
ically sends the message to the user (recipient) along with a piece of standard
computer mail telling him he has a message. The message itself does the rest; that
is, it queries the user, records his responses (plus a complete record of the interac-
tion) on a file owned by the sender, and tells the sender that the transaction has
taken place. '

The protocol of the agent-sender interaction that led to the creation of the
reactive message diagrammed earlier is shown below: :

AGENT: What is your name?
SENDER: don :

AGENT: To whom are you sending this message? ‘
SENDER: Professor Smith .,

AGENT: If the text is :

Dear Professor Smith:
and the reply is “[none]”

: then what is the new text?

SENDER: I'm currently trying to organize a

’ weekly seminar on message-handling
"systems. The only available day of

the week is Tuesday. ~ '

AGENT: ‘What are the possible replies?

SENDER: [none]”

* AGENT: If the text is : ~
‘ . I'm currently trying to organize a
weekly seminar on message-handling
systems. The only available day of
the week is Tuesday.
and the'reply is “[none]”
then what:is the new text?

SENDER: Would you bE\%in;téI)'EStEd in
~ attending such a series of
geminars? .

AGENT:
SENDER:

AGENT;

SENDER:

AGENT:
SENDER:

AGENT:

AGENT:
SENDER:

"AGENT:
SENDER:

" AGENT:
;12 :

AGENT:
SENDER:

AGENT:
SENDER:

4

What are the possible replies?
yes
no

If the text is:

Would you be interested in
attending such a series of
seminars?

and the reply is “yes”

then what is the new text?
Good

What are the possible replies?
[none]
If the text is :

Would you be interested in

seminars?
and the reply is “no”

_ ~ then what is the new text?
SENDER:)

Why not?

What are the possible replies?

If the text is :

Good

and the reply is “[none]”
then what is the riew text?
What time, between 1lam

* and 4pm, is best for you?

What are the possible replies?

1) v
Il the text is :
Why not?

and the reply is
then what is the new text?
OK, thanks anyway

for your response.

T ¥

What are the possible replies?
[none]

93? "f

AGENT:

AGENT:
SENDER:

AGENT:

32

If the text is:

What time, between 1lam
and 4pm, is best for you?
and the reply is "12”

then what is the new text?

:R: Noon is a bad

time for most
people,

What are the possible replies?
[none] ~

If the text is : .
What time, between 1lam
and 4pm, is best for you?
‘and the reply is "1"

then what is the new text?

GR: That sounds

good to me.

: What are the possible replies?
ER: [merge) ~

NT: If the text is :

- AGENT:
SENDER:

-‘AGENT:

SENDER:

AGENT:
SENDER:

AGENT:

What time, between llam
and 4pm, is best for you?

and the reply is " " .
then what is the new text?

iR: I see.

What are the possible replies?
[merge]

If the text is:

OK, thanks anyway =~ -— 7
for your response. { _
and the reply is “[none]

then what is the new text?

Goodbye -

What are thé possible replies? .
s

A

If the text is : **
Noon is a bad
time for most

 people. -

38

o

34

and the reply is “[none]”’
then what is the new text?
SENDER: What's your
: second choice?

AGENT: What are the possible replies?
SENDER: .

AGENT: If the text is :

What's your
second choice? .
and the reply is " " "
then what is the new text?

SENDER: Thanks, I'll get back to
you when the responses to
this message are tabulated

AGENT: What are the possible replies?
SENDER: .

:AGENT: Who else are you sending this message to?
SENDER: nobody

AGENT: Finished

Note that the sender specifies the expected replies by typing one reply per line and
ending. this sequence of lines with a period. In place of a reply, he can also type
"none” to indicate an associative link to the next piece of text, “merge” to indicate
that the link being created is to be merged with the one that was just created, or
just a carriage return to mdmate that the link being created will match any, rePIy'
of the recipient. P
There are a number of problems involved in 1mplementmg a mesgage-wrltmg
agent. The main problem is in designing the message to take the form of a general
'net structure but still be easy for the sender to create. The net structure, rather than
a restrictive tree structure, is needed to avoid repetition of similar substructures and
to curb the exponential growth of the data base. In the current implementation, arily
merging is permitted, which transforms the tree into a special type of net. It is clear
that simple ways of specifying general interconnections in the net are needed.
Another problem is putting the user into context during the user-agent dialogue
that results in the creation of the message. The current approach is to have the agent
repeat the last piece of text and the reply for the bram:h bemg extended, as shown
below:

AGENT: If the text is:
What time, between 1lam
and 4pm, is best for you?
and the reply is "'1” i
then what is the new text? . ‘ - ’

34

This, combined with the breadth-first generation of the tree, leads to a dialogue that
brings the user into context with a minimurn of confusion. A better approach would
be to display the entire tree (in some abbreviated form) each time the user is to enter
new text and have him decide which branches should be extended next. He could

indicate his choice by pointing with a light pen or moving a cursor to the appropriate
- gpot. If the mesgage being created has a very complex structure, the user may find

it necessary to sketch a diagram or flow chart illustrating where the questions are
to be asked and what rules are to be expected for each one, In such a situation, a

flow chart would help keep the user from hecoming confused or lost during message '

creation,
]
?
R .
. . - ;1;‘&
i - ’ s ’
~¢
" ~ b3
T :‘\ A
Y
¢ 8
v g r s
P 40

e,

V. CONCLUSIONS

The work that has been performed to date in knowledge acquisition using RITA
agents has a number of implications for knowledge-based systems. First, the produc-
tion-system framework can be used for implementing dynamic progeams, programs '
that create ﬂéw dsts and ccrde Ir1 particulsr the RITA architécture is 'suc:h thst, new
tmns Here the productmn system fbrrnallsrn is the critical factar when 1t comes tg

_the representation_of the program-being created. _That_ Is,-the_success. we have
\ obtained with RITA agents creating other RITA agents is due to the fact that the o
, . prograris being created—TASK, TEACH, TRANSFER, and MESSAGE—are all ’
based on the RITA production-system architecture.

Second, it has been demonstrated that user agents can be applied to the problem
of program creation and can preduce programs that have sorne practical application.
The TASK agent produced by EP:1'is a viable, general program for file transfer. EP-1
has also been used to create agents that access the New York Times Information -
Bank and retrieve abstracts of news articles pertinent to the user’s currentinterests.
The TEACH agent provides a way to tutor users without madlfymg the systems the
users have to interact with, and has been used to teach naive users about RITA. The’
TRANSFER agent provides a way of automatically acquiring large amounts of data .
about the use of the ARPAnet, in a form that can be applied d;réctly to the problem

* " of file transfer. The MESSAGE agenits created by WRITER can be used for personal
communication between computer users but are particularly usef‘ul as data- gather=
ing tools, i.e, as interactive qUE:stloﬂnalres
. Finally, the potential that exernplary prﬂg‘rammmg has for man-machine inter- .
!) f‘see applications has been demonstrated. It is a first step in helping the naive user
’ create programs without having to learn a programming language or other artificial

language for stating the problem to be solved. This technique is effective for pro--
' grams that involve much repetition of similar sequences of processing with few
dynamic variables, such as man-machine interface programs. The crux of the learn- -
ing problem in exemplary programming is how to generalize a program after seeing
only one or two paths to the solution, i.e., one or two examples of how the task can -~~~
-~ beaccomplished. We believe that this important problem i issolvableand that consid- - o
erable time and eﬂ'crt should Be devoted to 1ts solutmn o

Appendix A

A RITA AGENT THAT TRANSFERS A FILE FBDM
AN ARBITRARY ARPANET SITE TO RAND-UNIX

[OBJECTS]

OBJECT agent<1>:;

'T;%%é’% ----- QBIEGT‘ cutrent-system<l>i—— ‘,,— e ,,:,_',_,_é_,,,;_%

C)EJECT éystem_*il}: C

response
input
count

[RULES:]

" RULEL -
IF:
THEN:

. RULE 2
IF:

THEN:

e RULE 3:
' ‘ ' IF:
THEN:

RULE 4:
IF:

THEN:

IS 144 !jli
IS i 4 !i,
IS lioii;

the prompt OF the agent IS KNOWN

SEND the prompt OF the agent TO user

& RECEIVE the NEXT { ANYTHING ‘line- ccmb 0
JFOLLOWED BY'““*j "}

‘FOR 15 SECONDS F‘ROM the user

* & SET the new-reply OF theé agent TO ‘lme-cﬂntents

& SET the prompt OF the agent TO NOT KNOWN;

the new-reply OF the agent IS KNOWN]

% the new-reply OF the agent IS NOT ™ -

SET the reply OF the agent TO the new-reply CJF‘ the agent
& SET the new-reply OF the agent TO “ 7,

the reply OF the agent [S KNOWN

SEND the reply OF the agent TO system

& SEND * ” TO user ’ _

& SEND concat(“sent: ", the reply OF the agent) TO user
& SE’T‘»the reply OF the agent TO NOT KNOWN;

the name OF the current-system’IS I\TDT KNOWN

& the state OF the agent IS NOT KNOWN '

& the response OF the system CONTAINS {" "}

SET the ngrrm OF the current-system TO “file transfer
- progran”

& SET the state, OF the agent'TO “give the host name”

& SET the response OF the system TO * ”
& SET the reply OF the agent TO "ftp ;

87 o o

42

RULE 5: ' '
IF: the name OF the current-system IS “'file transfer program”
& the state OF the agent IS “give the host name”
‘& the response OF the system CONTAINS {“Host: '}
THEN: SET the state OF the agent TO “login®” r
. &SET the response OF the system TO * LA <
- : & SET the reply OF the agent TO "cmu-10a”
& SET the prompt OF the agenfgiif)
. “What S'ystétn shall I retrieve the file from?. .. ~$";

RULE 6: . S '
IF: the state OF the agent I8 “login” ' -

& the response OF the system CONTA,INS > 1
. THEN: SET the response OF the system TO * ”
" & SET the reply OF the agent TO. "user”;

RULE 7. |
I#: the response QF the system CONTAINS {“‘username: '’}
THEN: SET the state OF the agent TO *give password”
' & SET the response OF the system TO * 7
& SET the reply OF the agent TQ "a330dw28”
- & SET the prompt OF the agent T'O
“*What.is your user name o t}us system?...~$";

1

RULE §: -
IF: the state OF the agent IS ‘give passwnrd“
- & the response OF the system CONTAINS {*“> "} .
THEN: SET the résponse OF the system ™"
& SET the reply OF the agent TO “pass

RULE 9 - ' v
IF: the response OF the system- CQNTAINS {“Passwczrd "} o
THEN: SET the state OF the agent TO “retrieve the file” _ —
& SET the response OF the system TO “ " .
& SET the reply OF the agent TO “abcdef”
& SET the prompt OF the agent TO
"What is your password on this system?. ..~ $\
RULE1l0: v : \
IF: the state' OF the agent IS “retrieve the file” C
- & the response OF the system CONTAINS {“> "}
THEN: SET the response OF the system TQ “
" & SET the reply OF the agent TO “retr”;

" RULE I1:
IF: the. response OF the system CONTAINS {“remotefile: *’)
THEN: SET the response OF the system TO™ ” '
& SET the reply OF the agent TO “mail, boanSOdwi?S"
.& SET the prompt OF the agent TO :
" "What file do you want retrieved?. .. ~$";

i

R RULE 12 |
| R IF: the response OF the systerﬂ CONTAINS {“laca.lflle ’}

'I‘ZHEN SET the state OF the sgerxt TO “‘say gmdby to the remote '
- host” .
‘& SET the response OF the system TO * ”
& SET the reply OF the agent TO "ne;wclat.a_“
& SET the prompt OF the agent TO =
"What do you want to call the retrieved file?.. .~.$“;)

RULE 13 ‘ e
‘ : IF' the state DF I;he agent IS "say gaodby to the remote host”
- o .- & the response OF the system CONTAINS {“> "} - :
i THEN: SET the name.OF the current-system TO “unix”
' & SET the state OF the agent TO *‘quit” - :
- & SET the response OF the system TO “ ”
& SET the reply OF the agent TO “bye”;

RULE 14: A ’

~ IF: the name OF the current-system IS "unix” -

& the state OF the agent IS “quit”

& the response OF the system CONTAINS {"?’ “}

THEN: SEND “the file transfer has been cﬂmpleted" TO user
& RETURN SUCCESS; :

RUL_E 15:
IF: the input OF the systern IS o
& the count OF the system IS less THAN 20
TEEN RECEIVE FOR 5 SECONDS FRDM Systern AS the mput C)F
. the system
& SET the count OF the system TO1 + the count DF the
system; .

RULE 16:
LI the munt OF the systern 18 less THAN 20
THEN: SET the response OF the system, TO
concat(the response OF the system, the input OF the
systern) _ :
& SET the input OF the system TC) e,
& SET the count OF the system TO 0
& SEND concat("got: ”, thé\ response DF the system) 'I‘D
_user; . .

N
A

Wt

. got:

Appendlx B

A PRDTQGQL OF A USER RUNNING THE TASK AGENT

User input is shown in 1t:allcs TASK agent response in nﬂrmal type, and system
+ response in boldface. -

% rila go

EoO:

sent: ftp
got: Host:

What system shall I retrieve the file from?.. .sri-ai

sent: sri-ai .
got: Connections established.

> > 300 SRI-AI FTP Server 1.44.0.0 - at THU 20-MAY-76 10:21-PDT

sent: user _
got: ?Command argument too long

sent: user
got: username:

. o
-~ What is your user name on thls systern'? ..rand—- -

gent: rand :
got: 330 User name at:cer.nted Passwurd please

>

sent..pass q
got: - Password; ‘ }
What is your password on this system?. . .abedef

sent: gbcdef‘

230 Lngm completed
>

sent: retr -
got: remotefile:

- What file do ybu want retrleved'f. . .test. ba.s

gsent: test, bas \ _‘_; B

_got:. _?Command argurnent too long

> >
o ! . ' 40

\ 41
o T sent retr .
‘ got: '?Command argument tac: long

g i
sent: retr
o . got: ?Command argument too long

_sent: retr’
. got: -remotefile:. :
- What file do you want retrieved?. .. test. bas

sent: test.bas
= . . got: localfile: - -
©»> . What do yoir want to call the retneved ﬁle'? -
’ w : sent: newdata“ _ _ : B
got: 255 SOCK 3276932611 :

got: 265 SOCK 3276932611
250 ASCII retrieve of ﬂiRAND:&TEST BAS 1 started.

. got: 2565 SOCK 3276932611
. 250 ASCII retrieve of <RAND>TEST.BAS;! started.
252 Transfer completed. :

~ sent: bye

; got: 231 BYE cnmmand received.
% .
the ﬁle transfer has been completed

* exit; '
. exiting.:

LT

. This is a RITA ruleset designed to help you learn

’ s:ratch

%

Appendl:s C
A PRDTQCDL OF A USERsTEACH INTERACTIDN

3 . . "
. . . '

User input is shown in 1t.ahcs, "TEACH agent response in narmsl t.ype, and

 system response in boldface.

% rita use.teach

use.teach:

to use RITA. Type “help;” if you need help. . " o
f[End all R!TA commands W1th a semu:olon(] A '

* help;

In addition to the standard RITA. mput ‘you may alsn type show me, fullgwed
by either commands, actions, functions; rules, goals, (any command name), (any

- action name), or (any function name). The result will be either text or an on-line

demo. Each-time you repeat the show me request, you will be given a ‘new demo
Typing again; is Equwalent to typing the last shcw me cgmrnahd

* show. me commands;

continue.
edit .

- oexit

load

news , A

quiet : o ' S
run - . ~ . o

set ordered
set trace ,
set unordered .

- shell -

verbose
(any RITA action)
(any rule body)

* show me actions;

create .

deduce

.delete. .

42 l w A

display
put Coe
réceive
remove
, return*
send
set - o
stop at
trace
unstop -
untrace -
(any function call)

clock -
concat
delay
div .
- index
minug
) nisubstr
plus
" substr
_times
* show me Los Angeles;
I'don’t know about Los Angeles;
* show me deduce; © -
’ [start of deduce demo)
* Dbject book; - : N
[Object book<1> added]
~* display object book;
OBJECT book<1>:;

* deduce the name of the book;
What is the name of the book?
Response:Gone with tghe Wind

* display object book;

OBJECT book<1>: -
‘ name IS "Gone with the Wind";

8

- R * * delete object book; -

Voo [end of demo: 2 deduce demo's available]

* again,
[start of dedﬁte‘dema]
- ' * object hat;

- [Object hat<1> added]

~* goal demo L

“ift the color of the hat is “"brown” _
. .then: set the owner of the hat to “Richard”;
[Goal demo-added] :

v * deduce the owrier of the hat; ;
What is the color of the hat
Response:brown.

/ * display object hat;
OBJECT hat<1>:
owner IS "Richard”,
" eolor IS ‘“brown”;

T delete object hat; delete gdal demo;

E . - .
[end of demo: 2 deduce dema’s available]

* show e trace;
. [start afdtirace;deim] b

~ * rule testl ;
if: value of count is greater than 4 _
then; send “The value of count is 5.” to the user
- and return success; n
[Rule testl added]

" : . * rule test2
' . .if*.value of count is less than 5
then: set the value of count to 1+ value of count;
[Rule tesi2 added]

* object ¢ount: value is O;
©* [Object count<1> added]

49

* trace all rules;

"—i‘ run;- L. .
: == ===~ > rule test2 a.bnh't to fire
" = = & === rule test2 about to fire
. ======> ruletestZ about to fire
- = = = =~=> rule test2 about to fire -
== = ===" rule testZ about to fire °
== = ~==> rule testl about to fire
The value of count is 5.
7 Success! -
- * delete object count;
- i g * untrace all rules; delete rule testl; delete rule test2
! *
* i .
[end of demo: 2 trace déma‘s ,available]
* send "this is the user talkmg to the user;
th;s is the user talkmg
*. rule 1if ualue af ¢ is less thﬂn 5 :
then send value of ¢ to user .
and set value of ¢ to value ofr: +1;
[Rule 1 added] o
- * run;
Failure.
* object ¢ value is YCJ; :
_[Object ¢<1> added]
* run;
0
1.
2
l.\ 3
Failure.
* show me plus;
o, * [start of plus demio] N
* gend plus(3,4) to the user;
Ly 7 - .
) . .) . p -
u- ! N Q U .

*ome

“ * ’ ', - L \ _

. *Sér'ds+4t6theusg;;: ' \
i 7 .x: .] A ' - A

E * ijeét people: number is 8;
_ [Object people<1> added]

* send plﬁs(plﬁs(z,‘?), number of people) to the user;
17 o - '

A}
ES

* delete object people; .

[end of demo: 2 plus demo’s available]
* exit;‘:' .
%

ae

-

al

Appendlx)

. A PROTOCOL OF A USERTUTOR INTERACTION
TO CREATE A PROGRAM TO TEACH LISP

- User input is shnwn in. 1tallcs, \TUTDR agent response in narmal type, and
systern response in boldf'ace oo)

. . A
% rita tutor S ')
tutor: -
What is the name of the systern to be demonstrated'?
lisp , :
What prompt character daes hsp use‘? “n o l '
2
-Please type a &mmanﬂ to call the system to beféemonstraté‘d
% 8ys. .
Type text that would be appropnate asa ’
response to a query for help in the lisp system.
Terminate the text with double. <carrlage return} o
Type “show me” folbawed by "functions” or a *
1 name of a function~o elicit a list of function, % °
’ ' names or a demonstration of the function. -~ _—
.. . »
Classify the types of capabilities you' intend to
~ demonstrate in lisp. On one line put the category name o
and on the next the list of items in that category, e.g.: n ;

T

Ed

commands
load) news run exit.’
actions

. put set send remove.’

terminating the text bytyping a line
_..containing just a ficarnage return>, ¢

functions.

car

selq

B

Please give a name for each demo when asked. A demo
- can consist, of séveral examples. To indicate the end
. " of an example type “(end of example)”. To indicate ' . _
' ~ « the end of all the examples of that partmular demo, AR
type "(end of demo)”s: :

48

What are you going to demonstrate? car -

=> (car (abed) . A

a R

=>(car (this is a test)
this
—}(car (ta bXc d)))
(ab)

- =>(end of example)

o a::-~(end of demo)

o I What are you going to demonstrate? setq
: ~> (setg a 12) : . L e
. B B 12 N ==
C=2a
12 ’
- =>(plus a 13).
<> (setq b (cdef)) ; S .
(cdefh) ' 7 ' i
~>(cons a b) ' ' : :
(12cdef)
~>(end of example)
. => (setq a first) -
¢ first .
=>(setq b ‘secortd thzrd))
(second third)
" <>(setq a (cons a b) ~
* (first second-third) *- - S .
->a
(first second third)
~>(end of example)
~>(end of demo)

o

What are j;au g{)‘igg to demonstrate? (ncxthing)

' Type a cnmmand to e;nt the system being demanstrated
=>-(exit)

exiting.

@ '

45

LT L Appendle T

A PROTQCOL OF THE USE OF THE TEACH AGENT
Lo . CREATED FOR LISP*

7 User mput is shuwn in 1talu:‘s TEACH agent response in normal type, and
-~ system response in ledface

o T % rita use.teach.t ’ _ ‘)
use&aeh;t: o e, - , _ =
. . i A .
.~ *This is a program de&g‘ned\to help you learn - N
‘to use llsp Typé 'help if ycu\ need help. | : :

=
= . = 3\ . E
i :

et => help
Type show me, foll@wed by functionsora °
name of a function to elicit a list of function = - =
hames or a demonstration of the funttion,

. i

-> show me functions. K
car e | .
.setq ' :

-> show. me car

/, L ©[start of car demo] '

*=> (car ¢ gb ¢)

ot ‘a

-~ “>(car '(thls isa test‘)

’ S ..this ’ < T))
=>(car ‘((a b)(c an) T . N,

v A (R b) ,a"*f - ’

. - [end uf‘ demo: 1 car dema(s} a\'allable]

e T > shaw me selg | N
I don’t know about setg .

. —::- shaw me setq
Est.art of setq dema]

, - ‘See App.D. .

- 60

=>(setq a 12) ‘

12 ’\ :
->a ’
12 |
->(plus a 13)

26 ‘ :
->(etqb'cdeD) '\
cdef

=>(cong a b)

(12cdef A

[end of demo: 2 setq demo(s) available]

—-> again
[start of setq demo]

->(setq a first)

first

~->(setq b ‘(second third))

(second third)

->(setq a (cons a b))

(first second third)

=8

(first second third)

[end of demo: 2 setq demol(s) available]

-> (setq r (this is a sentence)) Loy

(this is a sentence)
->(car r)

this

->(exit)

exiting.
Y%

L™

BIBLIOGRAPHY

Anderson, R. H., “The Use of Production Systems in RITA To Construct Personal
Computer ‘Agents,”” Proceedings of the Workshop on Pattern-Dirccted Inference
Systems, SIGART Newsletter No. 63, 1977, 23-28, (a)

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. (,uregnbglg, and R. Villanueva,

. RITA Reference Manual, The Rand Corporation, R-1808-ARPA, 1977 (b).

Anderson, R. H., and J. J. Gillogly, Rand Intelligent Terminal Agent. (RITA): Design
Philosophy, The Rand Corporation, R-1809-ARPA, 1976,

Balzer, R. M., Automatic Programming, Institute Technical Memorandum, USC/
Information Sciences Institute, Los Angeles, 1972,

Balzer, R. M., A Global View of Automatic Programming,” Proceedings thhe Third
International Conference on Artificial Intelligence, Stanford, California, 1973,

pp 494 499

Emmples Computer Sr ience Departrnent REpGI‘t CS 1976—12 Dul{e Umvers :
sity, 1976,
Biermann, A. W., and R. Krishnaswamy, Constructing Programs from Example
- Computations, Computer and Information Science Research Center Report
CISRC-TR-74-5, Ohio State University, 1974. »

- Bobrow, D a’nd T Winagrad "An Dverview af KRL a Knawledge Representation

. Brooks, R., “Productmn Systerns as Control Structures for Programming Lan-

guages,” Proceedings of the Workshop on Pattern-Directed Inference Systems,

" SIGART Newsletter, No. 63, 1977, pp. 33-37. ,
Buchanan, B. G, and N. S. Sridharan, “Rule Formation on Non-homogeneous
" Classes of Objects,” Proceedings of the Third International Juint Conference.on

v i Artlﬁcml Intelligence, Stanford, C‘ahfgrnla, 1973. :

Buchanan, J. R., “A Study in Automatic Programming,” C@mpuier Seience Eepart,

. Carnegie-Mellon University, 1974.

E)aVIS, R., B. Buchanan, and E. Shortliffe, Production Rules as a Representation for
‘a Kriowledge-Based Consultation Program, Stanford Umversxty, Artificial In-
telligence Laboratory, Memo AIM-266, 1975.

Daws R., Applications of Meta Level Knowledge to the Cr:mstructmn, Muint.narce
~ and Use of Large Knowledge Bases, Stanf‘crd Umver.snty, Artmmal Intelligence
‘Laboratory, Memo AIM-283, 1976. ;

Dudh, P D P E Hart and J NllS Nllsson Subjectwe Bayesmrz Methacls for Ru.le

\.

76/

’ Galler B., and A. Perlis, A View of Programming Languages, Addison- Wesléy, 1970.

Goldb rg, P. C., “Automatic Programming,” Programming Methodology, G. Goos
a d J. Hartmanis (eds.), “Lecture Notes,” Cumputer Science, Vcsl 23, Sprmge‘r-ﬁ
Vér]ag, New York, 1975. ;

Green, é The Design of the PSI Program Synthesis System, Second International

Dr\f'erence on Software Engineering, San Francisco, California, 1976, pp. 4-18.

51°

52

Green, C., and D, Barstow, "Some Rules for the Automatic Synthesis of Programs,”
Proceedings of the Fourth International Conference on Artificial Intelligence,

1975, pp. 232-239.

_Green, C., J. Waldinger, R, Barstow, D. Lenat, B. McCune, D. Shaw, and L. Steinberg,

Progress Report on Program-Understanding Systems, Stanford University, Ar-
tificial Intelligence Laboratory, Memo AIM-240, 1974,

Hewitt, C., Description and Theoretical Analysis (Using Schemata) of Planner: A -
Language for Proving Theorems and Manipulating Models in Robots, TR-258,
Ph.D. thesis, MIT Artificial Intelligence Laboratory, 1972.

Klahr, P., The Deductive Pathfinder: Creating Derivation Plans for Inferential Ques-
tion-Answering, System Development Cnrpuratmn, SP-3842, 1975.

Lenat, D., "Beings: Knowledge as Interacting Experts Proceedings of the Fourth
International Joint Conference on Artificial ‘Intelligence, 1975, pp. 126-133.

Lenat, D., AM: An Artificial Intelligence Approach to Discovery in Mathematics as
Heuristic Search, Stanford University, Artificial Intelligence Laboratory,

-Memo AIM-286, 1976.

Manna, Z., and R. J. Waldinger, "Knowledge and Reasoning in Program Synthesls

Artificial Intelligence, 1975, Vol. 6, pp. 175-208.

‘Markov, A. A., Theory of Algorithms, National Academy of Sciences, USSR, 1954

McCarthy, J., P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. L Levin, LISP 1.5
" Programmer’s Manual, The MIT Press, 1965.
Newell, A., “A Theoretical Exploration of Mechanisms for Cochng the Stimnlus,”

Coding Processes in Human Memory, A. W. Melton and E. Martin (eds.), Win-

ston and Sons, Washington, D.C., 1972.- ,
Newell, A., "Production Systems: Models of Control Structures " Visual Information
Processing, W. C. Chase (ed.), Academic Press, New York, 1973.

Newell, A., and H. A’ Simon, Human Problem Solving, Prentice-Hall, Englewood
Cliffs, N.J., 1972,

Newell A.,and J. McDermott, PSG Manual, System VLI’SIQH PSG2, Carnegie-Mellon
.. University, 1974.

Pczst E. L., “Formal Reductions of the General Cnmbmatorlal Decision Problem,”
Amencan Journal of Mathematics, Vol. 65, 1943, pp. 197-268.

Rulifson, J. F., J. A. Derksen, and R. J. Waldinger, QA4: A Procedural Calculus for
Intuitive Reasoning, Stanford Research Institute, Menlo Park, 1972

Rychener, M. D., The Student Production System: A Study of Encoding Knowledge - -

in Praductmn Systems, Depar Lmei\t of Computer Science, Carnegle!Mellon
University, 1975.
Rychener, M. D, Introduction to Psnist, Depéx;tment of Computer Sclence Carnegie-
- Mellon University, 1976. - \
Shortliffe, E. H., Computer-Based Medical Cansultatmns MYCIN Elsevier, Vol. 2
" 6f the Artificial Intelligence Series, 1976. AN
Siklossy, L., and D. A. Sykes, "Automatic Program Syrgtheas from Example,”™ Pro-
ceedings of the Fourth International Joint Conference on Arnﬁmal Intelligence,
1975, pp. 268- 273.- N
Standish, T. A,, “Scenarios for Use of an Intelligent Termmal A Unwersnty of Cali-
fornia, Irvine, unpublished-manuscript.
Sussman, G. J.,and D. V. McDermott, Why Conniving is Better than Plannmg, MIT
Artificial Intelllgence Laboratr)ry Memo 255A, 1972. i

53

Teitelman, W., INTERLISP Refercnce Manual, Xerox Palo Alto Research Center,
Palo Alto, California, 1975.

Vere, S. A., Itelational Production Systems, Department of Information Engineer-
ing, University of Illinois, 1975.

Waterman, D.'A., “Generalization Learning Techniques for Automating the Learn-
ing of Heuristics,” Artificial Intelligence, Vol. 1, 1970, pp. 121-170.

 Waterman, D. A., “Adaptive Production Systems,” Proceedings of the Fourth Inter-
national Joint Conference on Artificial Intelligence, 1975, pp. 296-303.

Waterman, D. A., “Serial Pattern Acquisition: A Production System Approach,”
Pattern Recognition and Artificial Intelligence, C. H. Chen (ed.), Academic
Press, New York, 1976, pp. 529-5563 (a).

Waterman, D. A., An Introduction to Production Systems, The Rand Corporation,
P-57561, 1976 (b).

Waterman, D. A., and F. Hayes-Roth, ""An Overview of Pattern-Directed Inference
Systems,” Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-
Roth (eds.), Academic Press, New York, 1978. .

Waterman, D. A., and A. Newell, "PAS-II: An Interactive Task-Free Version cf an
Automatic Protocol Analysis System,” IEEE Transactions on Computers, C.25,

1976.

